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Abstract-A dual analysis for the path integrals is carried out theoretically and numerically, As a
dual form of Rice's I-integral, an alternative path-independent I*-integral is suggested in the paper,
which can be formulated as the complementary energy release rate for the linear/nonlinear elasticity
fracture system with a blunting crack modeL As an energy functional of the stress and displacement,
I* is equivalent to I in value since the effect of the stress distributions on the front of crack is
included in its formulation. Dealing with bound estimation problems for crack parameters, the
upper and lower bound theorems are described, respectively. J* is useful by the fact that its
approximate solution is able to provide an upper bound for the exact one, and that it will enable
the hybrid finite element to be: a power role in fracture calculations. A series of numerical results is
offered to verify the points mt:ntioned in the paper. CD 1998 Elsevier Science Ltd,

I. INTRODUCTION

The well-known J-integral (Rice, 1968; Eshelby, 1956) has been proved to be the most
valuable fracture parameter for the linear/nonlinear elastic fracture mechanics, As the
generalized manners of J, a series of path-independent integrals related to the potential
energy of crack systems have been presented by Knowles and Sternberg (1972) and Atluri
(1982), many new path independent integrals were developed for linear elasticity by Tsa
masphyros and Theocaris (1982) and the proof of existence of an infinite number path
independent integrals was given by Olver (1984), Some reviews have offered by Kanninen
and Popelar (1985) and Hellen and Blackburn (1986), In the mechanical point of view,
however, there must exist a dual form of J-integral which should be a path-independent
integral related to the complementary energy of the crack system, Based on the above
recognition, Bui (1974) presented an I-integral, which is expressible as the rate of decrease
of the energy functional for the stress field. In previous decades, the I-integral was, however,
neither widely applied nor deeply investigated either. The idea for dual path independent
integrals offered by Bui should be rational and considerable, but some problems related to
I should be cleared up and developed further. As shown in this paper, the value of I is not
identical to that of J, and the mechanical sense of I is different from that of J as well.

In this paper, an alternating path-independent I*-integral is presented, which can be
considered as the complementary energy release rate of a fracture system with a blunting
crack model. The duality of J and 1* can be verified theoretically and numerically. A
fascinating application of 1* would be that it is able to provide an approximate upper
bound for the exact I*-integral (to be identical with the exact J-integral), With respect to
the calculations of the path integrals, it can be demonstrated (Wu and Pian, 1997) that as
the energy functional of displacements, J = J(u) should be calculated by the assumed
displacement finite elements, which always provide some locking problems in the fully
plastic analysis (Nagtegaal et aI" 1974), On the other hand, as the functional of stresses
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and displacements, I* = 1* (a ij, u,) can be calculated by the hybrid finite elements with the
independent stresses aij and the displacements u" thus a numerical solution without locking
problem for 1* is available even in the case of the fully plastic fracture analysis.

2. DEFINITION AND ATTRIBUTE

Let us consider a homogeneous cracked system of lienar or nonlinear elsatic material
as shown in Fig. I, in which 0 X t X2 are the Cartesian coordinates and the curve r is selected
as an integral path, Ti is the prescribed traction force on the boundary Sa, the prescribed
displacement ui = 0 on the boundary Su, and nj is the direction cosine for the normal of
system edge. Then the present path integral can be defined as

(1)

where B(a i) is the complementary energy function. 1* = 1*(aij' u,) is an energy functional
with two kinds of field variables: the stress aij and the displacement ui•

The definition of 1* in eqn (1) is based on the following assumptions:

The strain-stress law is given by

oB
eij=~a .

au

The strain-displacement relation should be

a
_.-----,,L----+

u,=

Fig. I. Alternative integral contours for two-dimensional crack system.

(2)

(3)



Dual analysis for path integrals and bounds for crack parameter

The stress field should be in equilibrium, i.e.

in n (free of body forces) and
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(4a)

(4b)

on the crack surface (free of tractions).
It can be demonstrated that the present I*-integral given by eqn (I) is path independent

and is equivalent to Rice's J-integral. In the first place, we prove 1* is a path independent
integral as follows.

Taking two deferent curves rand r' as indicated in Fig. 1, with the conditions (2)
(4) and Green's formula, we have

=0

such that

The above identify can be expressed as

Note that on r 1+r2 : dX2 = 0 and (Jljnj = O. It turns out that (Ji2n2 = O.
Finally we have

f. (...)-f. (...)= 0, i.e. I~athl = I~athl"
1 l'

In the second place, let us prove 1* = J, where

is Rice's J-integral, wherein W(elj) is the strain energy function.
Referring to the path r in Fig. 1,

(5)

(6)

(7)

(8a)

(8b)

(9)

(10)



1638 c.-c. Wu et al.

= O. (11)

(12a)

This means that the exact 1* is identical to the exact J in value. Therefore, I*-integral
can be used as a control parameter for the linear/nonlinear elastic fracture problem as J
integral can.

3. COMPLEMENTARY ENERGY RELEASE RATE

It can be verified that the present path independent integral 1* can be expressed as the
complementary energy release rate for a given crack system, and we have

dITe1* =-~
da

where a is the crack length, and the system complementary energy is given by

ITe(CTij) = r B(CTij)dQ- r u,CTijnjdsIn Jsu
(12b)

where u; is the prescribed displacement on the boundary Suo
Observing the system with a blunting model shown in Fig. 2, the external bound of

the crack system can be selected as an integral contour due to the path independent property

n

•
•
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S. u; = 0
Fig. 2. Blunting crack model with different crack lengths.
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of 1*. In this case, on = r +r I +r 2+nm and nm = - mn indicates the front of the crack,
i.e., the tip of a smooth ended notch, as Rice (1968) termed. Assume that the crack length
a has grown by an amount L1a, then the coordinates located at the crack top are also movt:d
by L1a in the xl-direction. Therefore, both effects related with the variations of "a" and
"Xl" should be included in the calculation of dOc/da. Besides, the change of effective
area of the cracked system, i.e. the shaded one in Fig. 2, will produce a decrease of the
complementary energy by an amount of

(13)

Thus, corresponding to the crack extention by L1a, the increment of the system comp
lementary energy should be of the form

(14)

and

(15)

In the following development, it is convenient to use the complementary virtual work
principle, which states that for the stress field satisfying the equilibrium equation and the
prescribed traction boundary condition, there exsits the energy identity

(16)

Since oajoa and oau/oxl are also in equilibrium, eqn (16) can be, respectively, developed
into the following forms:

(17)

In views of eqns (12b) and (17), we have

I oa f oa
= Gij-o'ldn- ui-o'lnjds=O

n a Su a

and we have also

(18)
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(19)

Observing that the front of the crack keeps a stationary configuration regardless of the
changes ofcrack length in the assumed crack extension, the following geometrical constraint
holds:

(20)

Under the condition (20), a stress analysis on the crack front mn was carried out (Xiao,
1996), and the followilng identity can always be obtained regardless of the stress distributions
near the crack tip are symmetric or anti-symmetric:

(21)

Additionally, by using the identity (7), we have

(22)

Introducing eqns (21) and (22) into eqn (19),

(23)

Substitution of eqns (18) and (23) into eqn (15) finally produces

(24)

4. DISCUSSION ON I-INTEGRAL

The I-integral suggested by Bui (1974) takes the form of

(25)

In comparison with the present I*-integral defined by eqn (1), the following term is lost in
the I-integral:

(26)

It should be cleared up as to what is the sense of the above term. Observing that
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Then, by using the traction free condition (4b) to the front of crack mn, we have

Therefore,

On the other hand, by using the identity (7) and dX2 = 0 on r 1+r 2,

Substitution of eqns (29) and (30) into eqn (26) results in

1641

(27)

(28)

(29)

(30)

(31)

It is clear that the term !1I is just the double of complementary energy distributed on the
front of the crack.

With regard to the blunting crack model as shown in Fig. 2, undoubtedly, !1I #- 0, and
it cannot be ignored. Further, let us inspect a sharp crack model, which can be considered
as a limit form of the blunted crack. When the front of the crack is shrunk to a point, i.e.
the crack tip, the integral path mn -> O. Simultaneously, however, the stresses at the crack
tip become infinite (a i) -> CD), and so will the complementary energy function, i.e. B(ai) ->

00 with the Ilr singularity for the subject of nonlinear elasticity. In this situation, instead
of eqn (31) we have

AI = lim 2 In B(a;) dX2 = 0 X CD.
mn-O

m

(32)

It is a non-zero indefinite value and cannot be ignored either. In general, the term !1I
provides the path integral with a considerable energy contributions due to the non-zero
stress distributions on the front of the crack, and it can never be ignored no matter which
kind of crack models is to be considered.

The equivalence of 1* and J shown in eqn (II) clearly shows I #- J for an exact solution
satisfying the eqns (2)-(4). Thus, the integrals I and J possess some different mechanical
meanings. For instance, in the linear elasticity or small-scale yielding case, the integral J or
1* is related to the stress intensity factor K[ by

1* = J = KUE' (33)

where E' = E (Young's modulus) for the plane stress status, or E' = EI(I- p?) for the plane
strain one. Between the I-integral and K b however, maybe it is hard to find a relationship
to be like eqn (33).
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5. UPPER/LOWER BOUND PROBLEM

In view of the complexity of nonlinear fracture mechanics, it is hard to get exact
solutions for both of J and 1*, no matter what experimental methods or numerical methods
are used. Therefore, a technique to determine the upper and lower bounds of the path
independent integrals becomes of much concern here (Bui, 1974; Atluri et al., 1984). He
and Hutchinson (1983) presented some results about the bounds of J for fully plastic crack
problems. However it is hard to apply them to general/practical situations as only the
infinite bodies are considered. In the next, two bound theories for J and 1* will, respectively,
be established in a dual form. The discussion will be limited in the linear/nonlinear elasticity
with small strain assumption.

Lower bound theoretn
For a given elastic cracked system with the boundary constraint ajls = 0, if Uj and U,

are, respectively, the exact displacement and the approximate one based ~n the minimum
potential energy principle, the approximate value of i-integral will take the lower bound of
its exact one:

(34)

Proof Let ui = Uj+8u j , 8uj are compatible virtual displacements. Then the approximate
potential energy can be expressed as (Washizu, 1975)

(35)

As a stationary condition of IIp(u), 8IIp = O. On the other hand, for the given exact
displacements U j which satisfied the boundary condition ails. = 0,

should be holding, such that

IIp(u j ) = rW(U;)dO-f uiT,ds = - rW(Uj) dO.In Sa In
Besides it is well known that

(36)

(37)

In accordance with the definition of i-integral and its positive definite attribute, we have

where

d d r
J(Uj) = - da IIp(u;) = da In W(u j ) dO ): 0

(38)

(39)

(40)

Observing that W(Uj) and W(8u) are all the deformation energy functions, they possess the
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same function configurations, and must take the same varying regularity when a stable
crack in the system is developing. Thus, we see by comparison of eqns (39) and (40) that
b2J ~ 0, and then the inequality (34) must be true.

Upper bound theorem
For a given elastic cracki~d system with the boundary constraint a;1s. = 0, if rI;i and aij

are, respectively, the exact stress and the approximate one based on the minimum comp
lementary energy principle, the approximate value of /*-integral will take the upper bound
of its exact one:

(41)

Proof Let aij = rIij+ brI;i where brIij are virtual stresses

(42)

As a stationary condition of Be(a;), we have bIle = O. On the other hand, due to a;ls = 0,
the complimentary energy functional (12b) is now •

(43)

Besides,

(44)

In respect to the exact solutions, I*(rI;) = J(u;) ): O. Thus, by means of eqns (l2a) and
(42)-(44), we have

2 d 2 d r
b 1* = da b lIe = da In B(brIij) dO.

(45)

(46)

(47)

Observing that both B(rIij) and B(brI;) are the positive definite complementary energy
functions, and they possess the same function configurations. Therefore, they must take
the same varying regularity when the system is suffering from a stable crack development.
By comparison of eqns (46) and (47), we find that b2/* ): 0, and then the inequality eqn
(41) must be true.

6. NUMERICAL DEMONSTRATION

In order to demonstrate the path independent property of 1*, some typical crack
specimens are considered, they include
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0",

Fig. 3. Center-cracked panel (CCP) with unifonn stretching load ax.

0",

96

0", .

Fig. 4. Single-edge cracked panel (SECP) with unifonn stretching load (Ix.

• CCP is the center cracked panel with uniform stretching load (J CD (Fig. 3)
• SECP is the single edge cracked panel with uniform stretching load (JCD (Fig. 4)
• DECP is the double edge cracked panel with unifrom stretching load am (Fig. 5)

and
• CBB is the cracked beam bending with concentrated load P (Fig. 6),

The adopted discrete finite element meshes (only for the shaded parts ofeach specimen)
and the selected integral contours are shown in Figs 7-9 respectively. Material constants
of Young's modulus E and Poisson's ratio /l are 1,0 and 0.49, respectively. Two cases of
plane stress and plane strain are considered for every specimens which are calculated by
using I*-integral (1) and I-integral (25) simultaneously.

Since both I* and I are the energy functional with two field (Oij' u), it is rational to
employ two-field hybrid finite element approaches in our numerical calculations. We select
the 4-node plane hybrid model termed as P-S element (Pian and Sumihara, 1984) due to
its excellent behavior. In our linear elastic crack problems, (J CD = 1.0, all the obtained
solutions of 1* and I are transferred to the stress intensity factor K] by means of eqn (33).
Figures 10-13 provide a series of numerical results for the individual specimens wherein
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Fig. 5. Double-edge cracked panel (DECP) with uniform stretching load 17",.

96

Fig. 6. Three-point cracked beam bending (CBB) with concentrated load P.

-<>- contour I
---contour 2
-+-contour 3
--contour 4
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~.:&.lJErt..~I-+--i--+---;
Fig. 7. Finite element meshes for CCP/SECP and the selected contours.
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-o-contour I
-+-contour 2
-+-contour 3
---contour 4
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Fig. 8. Finite element meshes for DECP and the selected contours.

~
-<>- contour 1
----contour 2
-+-contour 3
---contour 4

1'-

~~Bl
Fig. 9. Finite element meshes for CBB and the selected contours.

four independent contours are included. All of them confirm that the present l*-integral
(l) is path independent.

For the purpose of examining the upper/lower bound theorems, we took CCP in Fig.
3 as a test specimen and employed the finite element meshes in Fig. 14. In order to obtain
a lower bound solution to leu), the well known 4-node isoparametric element, termed Q4,
was used since it is based on the minimum potential energy principle in accordance with
the lower bound theorem (34). On the other hand, in order to obtain a upper bound
solution to /*((1;), we need an equilibrium element which satisfied the equilibrium equations
and is in accordance with the complementary energy principle and the upper bound theorem
(41). To this end, we imposed the equilibrium equations to the P-S hybrid element by the
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Fig. 10. KI-solutions of CCP due to eqns (I) and (25) (K lem, = 4.506).

penalty equilibrating approach, such that P-S was innovated as a quasi-equilibrium element
termed as P-S(IX) (Wu and Cheung, 1995), in which the penalty factor was taken to be
IX = 104

• Tables 1 and 2 exhibit some approximate solutions of the stress intensity factor K j

corresponding to J and 1*, and the exact value of K] was given by Ewalds and Wanhill
(1984). We see that the formulas (1) and (10), respectively, produce the upper and lower
bounds to the exact integral values, in both the plane stress and the plane strain cases, and
regardless of the selection of integral paths.
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Fig. II. KI-solutions of SECP due to eqns (1) and (25) (Kimel = 6.517).

Table I. Stres.s intensity factor (KI ) solutions of CCP specimen (Fig. 3) in plane stress case

Integral path (Fig. 14) 2 3 4

Lower bound solutions by J(IO) 4.408 4.485 4.477 4.475
Upper bound solutions by 1*(1) 4.525 4.562 4.553 4.553
Exact K I 4.506 4.506 4.506 4.506

(E = 1.0, Jl = 0.3, (J", = 1.0).
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Fig. 12. K,-solutions ofDECP due to eqns (I) and (25) (K'mel = 4.900).

Table 2. Stress intensity factor (K,) solutions of CCP specimen (Fig. 3) in plane strain case

Integral path (Fig. 14) 2 3 4

Lower bound solutions by 1(10) 4.404 4.493 4.485 4.483
Upper bound solutions by 1*(1) 4.525 4.565 4.555 4.556
Exact K, 4.506 4.506 4.506 4.506

(E = 1.0, J1 = 0.3, (1 x = 1.0).
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Fig. 13. K,-solutions of CBB due to eqns (1) and (25) (Kimel = 2.185).

7. CONCLUSIONS

As a dual form of Rice's J-integral, the I*-integral is developed, which is path inde
pendent integral and equivalent to the value of i-integral for a given real status. The
mechanical sense of 1* is the complementary energy release rate of nonlinear elastic crack
systems. Based on the dual analysis for J and 1*, the upper and lower bound theorems are
established, such that the bound estimations for the fracture parameters can easily carry
out. It would be ve:ry interesting for engineers that 1* is able to provide an approximate
upper bound for the exact solution. In addition, it can be expected that the 1*-integral will
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Fig. 14. Meshes and contours for 1/4 CCP specimen used in bound analysis.
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provide the hybrid finite elements with a bright prospect in the computational fracture
mechanics.

As the end of the paper, let us consider a special case further: the front of crack mn
(Fig. 2) is chosen as an integral path for both J and 1*. Since Ti = (liP) = 0 on mn, we
obtain from eqn (10) :

(48)

so that J can be explained as an averaged measure of the strain energy on the front of
crack. On the other hand, from eqn (l) and by using eqn (31),

(49)

so that 1* can be explained as an averaged measure of the complementary energy on the
front of crack. Here the duality of J and 1* is exhibited by eqns (48) and (49) in a perfect
version.
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